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ABSTRACT

X-ray images are one of the most affordable and widely used medical diagnosis
method for various diseases, especially thoracic diseases. Significant amount of
X-ray imaging data exist in health care organizations across the world. However,
analyzing these X-ray images and generating pathology reports may take large
amount of effort and require high-level expertise of a radiologist. Deep neural
networks, permitting higher levels of abstraction and improving predictions from
raw data, can be used to help with this diagnosis process. In this paper, we build a
thoracic disease diagnose system using deep neural network, which could identify
the disease and generate pathology report simultaneously. The network is com-
posed of a 132-layer DenseNet as encoder to classify the disease and LSTM with
self-attention as decoder to generate the report. Through extensive experiments
and comparisons with existing work, we show the effectiveness of our proposed
model.

1 INTRODUCTION

With the increase of annotated visual data in clinical procedures, deep neural networks have rapidly
become a methodology of choice for analyzing medical images. Applying artificial intelligence
techniques to automatically detect and localize different types of thoracic diseases, and generate
radiological reports from X-rays become a critical need. We use two chest X-ray datasets for this
work, the National Institutes of Health (NIH) ChestXray-14 dataset and the Indiana U. Chest X-rays
dataset. Our model is composed of two parts: an image-encoder for multi-label classification and a
text-decoder for report generation. For the image-encoder, we apply various deep neural networks,
including VGGNet-16, ResNet-101, ResNet152, SE-ResNet152, and DenseNet-121. We utilize a
weighted binary cross entropy loss to mitigate the problem of unbalanced disease class distribution.
To account for the issue of corrupted labels in the ChestXray-14 dataset, we apply mixup, a regular-
izaiton technique to our DenseNet model. The main focus of our work is three-fold: (1) We propose
a joint model for multi-label disease classification and report generation; (2) We handle the problem
of unbalanced data in the ChestXray-14 dataset; (3) We address the problem of corrupted data in the
ChestXray-14 dataset by training our image encoder on the relabeled ChestXray-14 dataset provided
by Rajpurkar et al. (2018).
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2 RELATED WORK

Many recent works have been done on both the NIH ChestXray-8 and the NIH ChestXray-14
datasets. Wang et al. (2017) applied a pre-trained Deep Convolutional Neural Network (DCNN)
for multi-label classification and achieve an average area under curve (AUC) of 0.738. Yao et al.
(2017) proposed a model with an RNN decoder that exploited the conditional dependencies among
disease labels and obtained an average ROC AUC of 0.798 on the 14 labels. The CheXNet proposed
by Rajpurkar et al. (2017) achieved an F1 score of 0.435. However, this result is not comparable
to our results, because their model was tested based on human-relabeled test data. Rajpurkar et al.
(2018) later proposed another convolutional neural network CheXNetXt for concurrent disease de-
tection and a method to relabeled the corrupted ChestXray-14 dataset, and released their relabeled
training and validation data. Works have also been done on the Indiana U. chest X-rays dataset,
mainly for the report generation task. Wang et al. (2018) utilized the ChestXray-14 image data
together with publicly-unavailable text reports to train the text-image embedding network for both
disease classification and reporting and evaluate the model on both the ChestXray-14 and the Indiana
U. chest X-ray datasets. Another report generation model which utilized a co-attention mechanism
and a hierarchical LSTM was developed by Jing et al. (2017).

3 METHODS

3.1 DISEASE CLSSIFICATION

The disease classification task could be formulated as a multi-label classification task. Given an
image x ∈ R3×p×p, the system predicts y ∈ Rk indicating whether the patient has a certain disease,
where p is the scale of the image and k is the number of diseases. We formulate this question as a
k-way binary classification question and minimize the following loss function:

`(X,Y ) =

n∑
i=1

k∑
j=1

Y
(i)
j log(fj(X

(i))) + (1− Y
(i)
j )log(1− fj(X

(i))) (1)

where the upperscript and lowerscript denote the index of sample and disease respectively and the n
is the number of samples. We use the DenseNet Huang et al. (2017b) for this task, which is currently
most widely used image classification model. DenseNets improve flow of information and gradients
through the network, making the optimization of very deep networks tractable.

3.1.1 HANDLING UNBALANCED DATA

To address unbalance of the data, we implement the weighted loss and oversampling. In weighted
loss, instead of the regular loss, we optimize the following weighted one:

`(X,Y ) =

n∑
i=1

k∑
j=1

(1− wk)Y
(i)
j log(fj(X

(i))) + wk(1− Y
(i)
j )log(1− fj(X

(i))) (2)

Intuitively, we punish the model more if we misclassify a dominating class into another class.

Another approach is to sample the data according to their distribution, i.e. the data with minority
label will have higher probability to be sampled. The probability of sampling for i-th sample is:

sample weight(i) =
1

Z

k∑
j=1

y
(i)
j wj (3)

where Z is a normalized coefficient, and wj is the proportion of j-th class. Since the sampling
weight will be zero for data with no findings, we assign a constant to them.
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3.1.2 HANDLING CORRUPTED DATA

To handle the inaccurate labels which may influence the performance of our model, we apply the
relabeled Chestx-ray14 dataset proposed by Rajpurkar et al. (2018) instead of the original one to
train our network. Multiple networks are trained on the original training set to predict the probability
of each pathology presenting in the input image. A subset of those networks, which are chosen based
on the average error on the tuning set, constitute an ensemble that produces predictions by computing
the mean over the predictions of each individual network. The ensemble is used to relabel the
original Chestx-ray14 dataset and the relabeled dataset is proved to have a higher labeling accuracy
by human experts.

3.2 PATHOLOGY LOCALIZATION

Figure 1: Learning Deep Features for Discriminative Localization, Bolei et al., CVPR 2016

Heatmap Generation: Our multi-label classification network is designed not only for classifica-
tion, we also use the global and the local features extracted by our network to generate the likeli-
hood map of pathologies, namely a heatmap. We use a general technique called Class Activation
Mapping (CAM) proposed by Zhou et al. (2016) for CNNs with global average pooling, which en-
ables our classification-trained CNN to learn to perform pathology localization, without using any
bounding box annotations. The generated disease heatmap allows us to visualize and highlight the
discriminative disease regions of the input chest X-ray image detected by our CNN.

Our heatmaps are generated using CAM as illustrated in figure 1. For a given image, let fk(x, y)
represent the activation of channel k in the last convolutional layer of our CNN at location (x, y).
If the last convolutional layer has K channels, then the global average pooling layer which follows
the last convolutional layer would have K neurals and the kth neural would be the global average
pooling of the kth channel of the last convolutional layer, F k =

∑
x,y fk(x, y). For a given disease

class c, the input to the final softmax layer Sc, equals to
∑

k w
c
kFk, where wc

k is the weight of the
class c for the kth neural in the pooling layer. Since wc

k directly indicates the significance of the
feature extracted by the kth channel of the last convolutional layer, the class activation map for
disease class c is calculated with the weighted sum of each channel in the last convolutional layer.

Mc(x, y) =
∑
k

wc
kfk(x, y)

We re-scale the class activation map to the original size of the input image and obtain the heatmap
of the given image.

Bounding Box Generation: The bounding box for each input image is generated based on the
heatmap corresponding to that image. We pick up the local maximum points of the heatmap and
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(a) Generated Bounding Box (b) Ground Truth Bounding Box

Figure 2: Generated heatmap and bounding box

extend the bounding box horizontally and vertically from the local maximum point until the heat-
ing value is lower than a threshold. We use the bounding box with the largest size as the final
bounding box for the given image. Figure 2 shows an example of our generated bounding box with
comparision to the ground truth bounding box.

3.3 REPORT GENERATION

We experiment on the task of report generation using the Indiana U. Chest X-rays dataset, where
an amount of 7K images with the corresponding reports are available. As DenseNet Huang et al.
(2017b) gives the best performance on our image classification task, we use it as the image encoder
and directly adapt the parameters trained on the larger ChestXray-14 dataset. We baseline our report
generation model on a image-attended 2-layer RNN decoder, which in each time step, takes as input
the word embedding and the attention context over the image. The output of the image encoder is

{fi,j ∈ RF }Wo−1,Ho−1
i=0,j=0 , (4)

where F is the number of feature (ouput channel) and (Wo, Ho) is the output shape. We flatten it as
a sequence of feature vectors

F = [· · · , fi×Wo+j , · · · ]. (5)

We adopt Scaled Dot-Product Attention in Vaswani et al. (2017):

c = V(Softmax(qTK))T, (6)

where the query q, keys K and values V are MLP transformations of the current hidden state h and
the flatten image feature vectors:

q = MLPq(h), (7)
K = MLPk(F), (8)
V = MLPv(F). (9)

To improve the performance of decoding a long sequence, we use self-attention with second layer
RNN attending over all previous hidden states of the first layer:

q = MLPq(h
l
t−1), (10)

K = MLPk([h
l−1
0 , · · · ,hl−1

t−1}]), (11)

V = MLPv([h
l−1
0 , · · · ,hl−1

t−1}]). (12)

Jing et al. (2017) proposed a hierarchical decoder with a sentence-level RNN generating sentence
topic vectors and a word-level RNN unwrap each sentence based on the topic vector, which achieved
a much better result in terms of BLEU scores and other metrics. We also implement their architecture
but are not yet able to reproduce their performance.
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4 EXPERIMENTS

4.1 DATASET

The experiments are conducted on two chest X-ray datasets. The first one is the ChestXray-14
dataset releseased by NIH. It is an extended version of the ChestXray-8 dataset by Wang et al.
(2017). It contains 111,753 frontal view X-ray images of 30,805 unique patients with 14 disease
labels which were text-mined from publicly-unavailable radiological reports. The disease class dis-
tribution is unbalanced with over half of the data points being labeled as ’No Finding’. The text-
mined labels are claimed to have an accuracy of greater than 90%. However, this accuracy is the
text-mining accuracy. Based on our experiments, we believe that the label accuracy according to the
images is much lower than this for both the training set and the test set. The split of this dataset is
based on the split performed by Rajpurkar et al. (2017). They ensured that no patient overlap exists
between the splits. The other dataset we use is the Indiana U. Chest X-rays dataset with 7,470 X-ray
images and 3,955 radiology reports.

4.2 EXPERIMENTAL SETTINGS

To train the classification model (encoder), we first rescale the image to 640 × 640 resolution,
randomly crop into 512 × 512 size, and normalize based on the mean and standard deviation of
images in the ImageNet training set. Horizontal flipping is performed in 50% possibility. The
weights of the network are initialized with weights from a model pretrained on ImageNet. We train
the network in end-to-end manner using Adam with default parameters. The batch size is set to 8.
The learning rate is 0.001 and decay by a factor of 10 when the AUROC in validation set plateaus
after an epoch. No matter training on original or relabeled data, we only evaluate on the original test
split.

4.3 RESULT

4.3.1 DISEASE CLASSIFICATION

Table 1: Disease classification Area under Receiver Operating Characteristic (AURO)

Pathology Wang et al. Yao et al. Ours Rajpurkar et al.
Atelectasis 0.716 0.772 0.838 0.809

Cardiomegaly 0.807 0.904 0.911 0.925
Effusion 0.784 0.859 0.883 0.864

Infiltration 0.609 0.695 0.752 0.735
Mass 0.706 0.792 0.849 0.868

Nodule 0.671 0.717 0.803 0.780
Pneumonia 0.633 0.713 0.837 0.768

Pneumothorax 0.806 0.841 0.868 0.889
Consolidation 0.708 0.788 0.821 0.790

Edema 0.835 0.882 0.901 0.888
Emphysema 0.815 0.829 0.938 0.937

Fibrosis 0.769 0.767 0.794 0.805
Pleural Thickening 0.708 0.765 0.805 0.806

Hernia 0.767 0.914 0.709 0.916

Average AUROC 0.738 0.798 0.826 0.841

Table 1 shows our classification results as well as other state-of-the-art models. Our model trained
on relabeled data achieves averages AUROC of 0.826 and outperforms Wang et al. (2017) Yao et al.
(2017) by a distinct margin. Although Rajpurkar et al. (2017) has better classification score than us,
but the results are not comparable. They use a private test dataset with 420 images to evaluate their
model, which is also not consistent with our settings.
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Table 2: The AuROC of our model with different training techniques

Model AUROC F1 Score Best Epoch
Baseline 0.826 0.41 12
+ 224×224 scale 0.783 0.32 10

+ weight decay (1e-4) 0.792 0.33 11
+ dropout 0.806 0.382 3

+ oversampling 0.818 0.40 5
+ weighted loss 0.810 0.39 9

+ mixup + oversampling 0.787 0.25 4

We also try different techniques shown in Table 2. Although none of these methods improve model’s
performance, it shed the light of this dataset. First, since the DenseNet is pretrained on 224×224
resolution, we try to feed the network with the same image size. The reason of failure might be
the image is compressed from 2048 × 2048, such high degree of compression will lose important
information. Secondly, we observe that the loss on train split is much lower than in development set,
so we add some common regularizers as well as mixup Hongyi Zhang (2018). But it doesn’t work
as expected because they might eliminate the noise during the training process, which also exists
in the test set. Oversampling can dramatically speed up the training process and we expect the the
performance gap is due to randomness during the training process.

4.3.2 PATHOLOGY LOCALIZATION

Table 3: Pathology Localization Accuracy

T(IoU) = 0.2 T(IoU) = 0.6
ChestX-ray14 ChestX-ray8 ChestX-ray14 ChestX-ray8

Atelectasis 0.3611 0.4722 0.0167 0.0222
Cardiomegaly 0.9247 0.6849 0.2397 0.0753

Effusion 0.4444 0.4509 0.0196 0.0457
Infiltration 0.4878 0.4796 0.0650 0.0243

Mass 0.4824 0.2588 0.0471 0.0000
Nodule 0.1266 0.0506 0.0000 0.0126

Pneumonia 0.5083 0.3500 0.0500 0.0166
Pneumothorax 0.3878 0.2346 0.0714 0.0306

Average AUROC 0.4654 0.3727 0.0637 0.0284

We evaluate the performance of our generated heatmaps and compute bounding boxes against the
hand annotated ground truth bounding boxes included in ChestX-ray14. It enables us to get a rea-
sonable estimate on how well our models perform on feature extraction and disease localization. We
use the standard Intersection over Union ratio (IoU) to measure the performance of our localization.
We define a correct localization requiring IoU > T (IoU). Table 3 illustrates the accuracy of our
localization result on Chestx-ray14 and we found that the dataset only contains annotated bounding
boxes of about 900 images for 8 class of diseases. Wang et al. (2017) also explored disease local-
ization on dataset ChestX-ray8 and this dataset contains annotated bounding boxes for the same 8
classes of diseases on 1600 images. Despite of the fact that our model is working on more number
of disease classes, we still get a fair result compared with their performance and we perform even
better on some classes of disease like Cardimogaly and Pneumothorax.
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4.3.3 REPORT GENERATION

We give in Table 4 the performance of our report generation models in terms of BLEU-{1, 2, 3, 4}
and ROUGE scores (using https://github.com/harpribot/nlp-metrics). Due to
constraint of time and GPU resources, we complete the experiments on just our baseline decoder
and self-attentive decoder, and the results show a better capability of self-attentive decoder to gener-
ate sequence. We also attempted to reproduce the hierarchical decoder proposed by Jing et al. (2017)
which has a BLEU-4 score of 0.247 on their test set but have not yet worked it out. Nevertheless, our
self-attentive decoder has achieved a relatively better or comparable performance compared to other
report generation models mentioned in Jing et al. (2017) (not listed here due to different dataset
partitioning).

Table 4: Report Generation Results

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE
Baseline 0.3615 0.1910 0.1145 0.0746 0.2803
+ Self-attention 0.4195 0.2578 0.1740 0.1231 0.3259

Table 5 below shows several examples of our generated reports, which could to some extend reason-
ably describe the X-ray image, as compared to the ground truth. Limitations are that the dataset is
too small for the model to learn a better understanding of the image, and that a majority of reports
in the dataset follow a similar pattern (typically for normal images), leading to the bias of generated
reports. We believe that with more data available, e.g., if NIH would release the corresponding re-
ports with the ChestXray-14 dataset, the task could be better solved. Wang et al. (2018) from NIH
actually train the report generation model on the ChestXray-14 dataset with the reports available,
but kept privately within NIH.

Table 5: Gound Truth and Generated Report Comparisons

Image Ground Truth Generated Report
heart size normal. mediastinal silhouettes
and pulmonary vascularity are within
normal limits. calcified lingular granu-
loma. No focal consolidations or pleu-
ral effusions. No pneumothorax. Breast
implants there is a moderate wedge xxxx
deformity of the midthoracic vertebrae,
xxxx t6, age-indeterminate.

1. no acute cardiopulmonary
disease. the heart and medi-
astinum are unremarkable. the
lungs are clear without infiltrate.
there is no effusion or pneu-
mothorax. there is a mild wedge
xxxx deformity of the midtho-
racic vertebral body.

very low lung volumes, bronchovascular
crowding and bibasilar areas of atelecta-
sis. no lobar consolidataion. no appre-
ciable pleural effusion or pneumothorax.
heart size within normal limits.

the cardiomediastinal silhouette
is within normal limits. there
are low lung volumes with bron-
chovascular crowding. there is
no large pleural effusion. there
is no pneumothorax.

negative for acute cardiopulmonary pro-
cess. negative for cardiac enlargement
or vascular congestion. minimal subseg-
mental atelectasis at the left base other-
wise negative for focal confluent airspace
disease. the visualized bony structures
are intact. there are minimal degenera-
tive disc changes of the mid/lower tho-
racic spine. no pneumothorax.

1. no acute cardiopulmonary
disease. the heart and medi-
astinum are unremarkable. the
lungs are clear without infiltrate.
there is no effusion or pneu-
mothorax. there is mild degen-
erative changes of the thoracic
spine.
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5 DISCUSSION

5.1 LIMITATION OF DATASET

5.1.1 CORRUPTED TEST LABELS

One major limitation of this dataset is that both the training and test labels are corrupted to some ex-
tent, since they are both text-mined from text reports. We applied the mixup regularization method
which to help increase the robustness of a neural model when the training labels are corrupted. How-
ever, it fails to improve the performance of a DenseNet model trained on data without relabeling.
This result supports our previous hypothesis that both the training and test labels are not exactly
accurate. It is likely that without mixup the model can predict the similarly corrupted test labels
with more success.

5.1.2 SPLIT OF DATASET

The original split of the ChestXray-14 dataset available on Kaggle does not guarantee no patient
overlap between splits, which may lead to the problem of data leakage. As a result, we adopt the
split performed by Rajpurkar et al. (2017) which provides this guarantee.

5.2 FUTURE WORK

For future work, one thing we could do is to refine the ChestXray-14 dataset, especially the labels.
Even though Wang et al. (2017) mentioned the text-mined labels are at least 90% accurate, they
did not take any possible mismatch between text reports and X-ray images into consideration and
did not mention how accurate a label is to an image. The meaning of some labels is also obscure.
For example, there is no information about whether ’No Finding’ equals to ’No Disease’ in this
dataset. What’s more, we could continue working on reproducing the hierarchical LSTM model
with co-attention mechanism proposed by Jing et al. (2017) which demonstrates better performance
in the report generation task. We could introduce other state-of-the-art vision object detection neural
models like R-CNN for better disease localization and utilize both frontal and lateral view of the X-
ray images to further improve classification performance.
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